An Overview of the IRanges package

Patrick Aboyoun, Michael Lawrence, Hervé Pagès

Edited: February 2018; Compiled: November 1, 2022

Contents

1 Introduction 1
2 IRanges objects 2
2.1 Normality 4
2.2 Lists of IRanges objects 5
2.3 Vector Extraction 5
2.4 Finding Overlapping Ranges 5
2.5 Counting Overlapping Ranges 6
2.6 Finding Neighboring Ranges 6
2.7 Transforming Ranges 6
2.7.1 Adjusting starts, ends and widths. 6
2.7.2 Making ranges disjoint 9
2.7.3 Other transformations 10
2.8 Set Operations 10
3 Vector Views 11
3.1 Creating Views 11
3.2 Aggregating Views 11
4 Lists of Atomic Vectors 12
5 Session Information 15

1 Introduction

When analyzing sequences, we are often interested in particular consecutive subsequences. For example, the a vector could be considered a sequence of lower-case letters, in alphabetical order. We would call the first five letters (a to e) a consecutive subsequence, while the subsequence containing only the vowels would not be consecutive. It is not uncommon for an analysis task to focus only on the geometry of the regions, while ignoring the underlying sequence values. A list of indices would be a simple way to select a subsequence. However, a sparser representation for consecutive subsequences would be a range, a pairing of a start position and a width, as used when extracting sequences with window.

An Overview of the IRanges package

Two central classes are available in Bioconductor for representing ranges: the IRanges class defined in the IRanges package for representing ranges defined on a single space, and the GRanges class defined in the GenomicRanges package for representing ranges defined on multiple spaces.

In this vignette, we will focus on IRanges objects. We will rely on simple, illustrative example datasets, rather than large, real-world data, so that each data structure and algorithm can be explained in an intuitive, graphical manner. We expect that packages that apply IRanges to a particular problem domain will provide vignettes with relevant, realistic examples.

The IRanges package is available at bioconductor.org and can be downloaded via BiocMan ager::install:

```
> if (!require("BiocManager"))
+ install.packages("BiocManager")
> BiocManager::install("IRanges")
```

```
> library(IRanges)
```


2 IRanges objects

To construct an IRanges object, we call the IRanges constructor. Ranges are normally specified by passing two out of the three parameters: start, end and width (see help(IRanges) for more information).

```
> ir1 <- IRanges(start=1:10, width=10:1)
> irl
IRanges object with 10 ranges and 0 metadata columns:
            start end width
        <integer> <integer> <integer>
        [1] 1 10
        [2] 2 10
        [3] 3
        [4] 4
        [5] 5 10
        [6] 6 10 5
        [7] 7
        [8] 8 10
        [9] 
    [10] 10 10
> ir2 <- IRanges(start=1:10, end=11)
> ir3 <- IRanges(end=11, width=10:1)
> identical(ir1, ir2) && identical(ir1, ir3)
```

[1] FALSE
> ir <- IRanges(c(1, 8, 14, 15, 19, 34, 40),

+ width=c(12, 6, 6, 15, 6, 2, 7))
> ir
IRanges object with 7 ranges and 0 metadata columns:
start end width

An Overview of the IRanges package

	<integer>	<integer>	<integer>
[1]	1	12	12
$[2]$	8	13	6
$[3]$	14	19	6
$[4]$	15	29	15
$[5]$	19	24	6
$[6]$	34	35	2
$[7]$	40	46	7

All of the above calls construct the same IRanges object, using different combinations of the start, end and width parameters.

Accessing the starts, ends and widths is supported via the start, end and width getters:

```
> start(ir)
```

[1] $1 \begin{array}{lllllll} & 8 & 14 & 15 & 19 & 34 & 40\end{array}$
> end(ir)
[1] 12131929243546
> width(ir)
[1] $12 \begin{array}{lllllll}12 & 6 & 6 & 15 & 6 & 2 & 7\end{array}$

Subsetting an IRanges object is supported, by numeric and logical indices:

```
> ir[1:4]
IRanges object with 4 ranges and 0 metadata columns:
            start end width
            <integer> <integer> <integer>
    [1] 1 12 
    [2] 8
    [3] 14 19 6
    [4] 15 29
> ir[start(ir) <= 15]
IRanges object with 4 ranges and 0 metadata columns:
                start end width
            <integer> <integer> <integer>
        [1] 1 1 
    [2] 
    [3] 14 19 
    [4] 15 15
```

In order to illustrate range operations, we'll create a function to plot ranges.

```
> plotRanges <- function(x, xlim=x, main=deparse(substitute(x)),
+
        col="black", sep=0.5, ...)
+ {
+ height <- 1
+ if (is(xlim, "IntegerRanges"))
```


An Overview of the IRanges package

Figure 1: Plot of original ranges.

```
+ xlim <- c(min(start(xlim)), max(end(xlim)))
+ bins <- disjointBins(IRanges(start(x), end(x) + 1))
+ plot.new()
+ plot.window(xlim, c(0, max(bins)*(height + sep)))
+ ybottom <- bins * (sep + height) - height
+ rect(start(x)-0.5, ybottom, end(x)+0.5, ybottom + height, col=col, ...)
+ title(main)
+ axis(1)
+ }
```

> plotRanges(ir)

2.1 Normality

Sometimes, it is necessary to formally represent a subsequence, where no elements are repeated and order is preserved. Also, it is occasionally useful to think of an IRanges object as a set of integers, where no elements are repeated and order does not matter.

The NormallRanges class formally represents a set of integers. By definition an IRanges object is said to be normal when its ranges are: (a) not empty (i.e. they have a non-null width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e. there must be a non empty gap between 2 consecutive ranges).

There are three main advantages of using a normal IRanges object: (1) it guarantees a subsequence encoding or set of integers, (2) it is compact in terms of the number of ranges, and (3) it uniquely identifies its information, which simplifies comparisons.

The reduce function reduces any IRanges object to a NormallRanges by merging redundant ranges.

```
> reduce(ir)
IRanges object with }3\mathrm{ ranges and 0 metadata columns:
        start end width
    <integer> <integer> <integer>
    [1] 1 29
    [2] 34 35
    [3] 40 46
> plotRanges(reduce(ir))
```


An Overview of the IRanges package

Figure 2: Plot of reduced ranges.

2.2 Lists of IRanges objects

It is common to manipulate collections of IRanges objects during an analysis. Thus, the IRanges package defines some specific classes for working with multiple IRanges objects.

The IRangesList class asserts that each element is an IRanges object and provides convenience methods, such as start, end and width accessors that return IntegerList objects, aligning with the IRangesList object. Note that IntegerList objects will be covered later in more details in the "Lists of Atomic Vectors" section of this document.

To explicitly construct an IRangesList, use the IRangesList function.

```
> rl <- IRangesList(ir, rev(ir))
```

```
> start(rl)
```

IntegerList of length 2
[[1]] 181415193440
[[2]] 403419151481

2.3 Vector Extraction

As the elements of an IRanges object encode consecutive subsequences, they may be used directly in sequence extraction. Note that when a normal IRanges is given as the index, the result is a subsequence, as no elements are repeated or reordered. If the sequence is a Vector subclass (i.e. not an ordinary vector), the canonical [function accepts an IRanges object.

```
> set.seed(0)
> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length=500),
+ seq(10, 0.001, length=500))
> xVector <- rpois(le7, lambda)
> yVector <- rpois(le7, lambda[c(251:length(lambda), 1:250)])
> xRle <- Rle(xVector)
> yRle <- Rle(yVector)
> irextract <- IRanges(start=c(4501, 4901) , width=100)
> xRle[irextract]
integer-Rle of length }200\mathrm{ with }159\mathrm{ runs
    Lengths: 12 12 1 1 1 2 2 1 1 1 1 1 1 1 2 % .. 
    Values : 0 0 1 0 2 2 0 1 1 0 0 1 0 0 1 % .. 
```


2.4 Finding Overlapping Ranges

The function findOverlaps detects overlaps between two IRanges objects.

An Overview of the IRanges package

Figure 3: Plot of ranges with accumulated coverage.

queryHits subjectHits		
[1,]	1	1
[2,]	2	1
[3,]	3	1
[4,]	4	1
[5,]	5	1
[6,]	6	2
[7,]	7	3

2.5 Counting Overlapping Ranges

The function coverage counts the number of ranges over each position.

```
> cov <- coverage(ir)
> plotRanges(ir)
> cov <- as.vector(cov)
> mat <- cbind(seq_along(cov)-0.5, cov)
> d <- diff(cov) != 0
> mat <- rbind(cbind(mat[d,1]+1, mat[d,2]), mat)
> mat <- mat[order(mat[,1]),]
> lines(mat, col="red", lwd=4)
axis(2)
```


2.6 Finding Neighboring Ranges

The nearest function finds the nearest neighbor ranges (overlapping is zero distance). The precede and follow functions find the non-overlapping nearest neighbors on a specific side.

2.7 Transforming Ranges

Utilities are available for transforming an IRanges object in a variety of ways. Some transformations, like reduce introduced above, can be dramatic, while others are simple per-range adjustments of the starts, ends or widths.

2.7.1 Adjusting starts, ends and widths

Perhaps the simplest transformation is to adjust the start values by a scalar offset, as performed by the shift function. Below, we shift all ranges forward 10 positions.

An Overview of the IRanges package

```
> shift(ir, 10)
IRanges object with 7 ranges and 0 metadata columns:
            start end width
        <integer> <integer> <integer>
    [1] 11 22 12
[2] 18 23 
[3] 24 29 
[4] 25 39 
[5] 29 34 
[6] 44 45 2
[7] 50 56 %
```

There are several other ways to transform ranges. These include narrow, resize, flank, re flect, restrict, and threebands. For example narrow supports the adjustment of start, end and width values, which should be relative to each range. These adjustments are vectorized over the ranges. As its name suggests, the ranges can only be narrowed

```
> narrow(ir, start=1:5, width=2)
IRanges object with 7 ranges and 0 metadata columns:
        start end width
    <integer> <integer> <integer>
    [1] 1 1 2 
    [2] 9
    [3] 16 17 2
    [4] 18 19 2
[5] 23 24 2
[6] 34 35 2
[7] 41 42 
```

The restrict function ensures every range falls within a set of bounds. Ranges are contracted as necessary, and the ranges that fall completely outside of but not adjacent to the bounds are dropped, by default.

```
> restrict(ir, start=2, end=3)
IRanges object with 1 range and 0 metadata columns:
        start end width
    <integer> <integer> <integer>
[1] 2 3
```

The threebands function extends narrow so that the remaining left and right regions adjacent to the narrowed region are also returned in separate IRanges objects.

```
> threebands(ir, start=1:5, width=2)
$left
IRanges object with 7 ranges and 0 metadata columns:
        start end width
    <integer> <integer> <integer>
\begin{tabular}{rrrr} 
[1] & 1 & 0 & 0 \\
{\([2]\)} & 8 & 8 & 1 \\
{\([3]\)} & 14 & 15 & 2
\end{tabular}
```


An Overview of the IRanges package

[4]	15	17	3
$[5]$	19	22	4
$[6]$	34	33	0
$[7]$	40	40	1

\$middle			
IRang	s object with 7 ranges and 0 start end width		
	<integer>	<integer>	<integer>
[1]	1	2	2
[2]	9	10	2
[3]	16	17	2
[4]	18	19	2
[5]	23	24	2
[6]	34	35	2
[7]	41	42	2

\$right			
IRang	s object with 7 ranges and 0 start end width		
	<integer>	<integer>	<integer>
[1]	3	12	10
[2]	11	13	3
[3]	18	19	2
[4]	20	29	10
[5]	25	24	0
[6]	36	35	0
[7]	43	46	4

The arithmetic operators + , - and $*$ change both the start and the end/width by symmetrically expanding or contracting each range. Adding or subtracting a numeric (integer) vector to an IRanges causes each range to be expanded or contracted on each side by the corresponding value in the numeric vector.

```
> ir + seq_len(length(ir))
IRanges object with 7 ranges and 0 metadata columns:
        start end width
    <integer> <integer> <integer>
    [1] 0 13 14
    [2] 6
    [3] 11 22 12
    [4] 11 33 
    [5] 14 29 16
    [6] 28 41 
    [7] 33 53 
```

The $*$ operator symmetrically magnifies an IRanges object by a factor, where positive contracts (zooms in) and negative expands (zooms out).

```
> ir * -2 # double the width
IRanges object with 7 ranges and 0 metadata columns:
```


An Overview of the IRanges package

Figure 4: Plot of disjoined ranges.

	start	end	width
	<integer>	<integer>	<integer>
$[1]$	-5	18	24
$[2]$	5	16	12
$[3]$	11	22	12
$[4]$	7	36	30
$[5]$	16	27	12
$[6]$	33	36	4
$[7]$	36	49	14

WARNING: The semantic of these arithmetic operators might be revisited at some point. Please restrict their use to the context of interactive visualization (where they arguably provide some convenience) but avoid to use them programmatically.

2.7.2 Making ranges disjoint

A more complex type of operation is making a set of ranges disjoint, i.e. non-overlapping. For example, threebands returns a disjoint set of three ranges for each input range.

The disjoin function makes an IRanges object disjoint by fragmenting it into the widest ranges where the set of overlapping ranges is the same.

```
> disjoin(ir)
```

IRanges object with 10 ranges and 0 metadata columns:
start end width
<integer> <integer> <integer>

$[1]$	1	7	7
$[2]$	8	12	5
$[3]$	13	13	1
$[4]$	14	14	1
$[5]$	15	18	4
$[6]$	19	19	1
$[7]$	20	24	5
$[8]$	25	29	5
$[9]$	34	35	2
$[10]$	40	46	7

> plotRanges(disjoin(ir))

A variant of disjoin is disjointBins, which divides the ranges into bins, such that the ranges in each bin are disjoint. The return value is an integer vector of the bins.

An Overview of the IRanges package

```
> disjointBins(ir)
```

[1] 12212311

2.7.3 Other transformations

Other transformations include reflect and flank. The former "flips" each range within a set of common reference bounds.

```
> reflect(ir, IRanges(start(ir), width=width(ir)*2))
IRanges object with 7 ranges and 0 metadata columns:
            start end width
    <integer> <integer> <integer>
[1] 13 24 12
[2] 14 19 6
[3] 20 25 6
[4] 30 44
[5] 25 30 
[6] 36 37 [
[7] 47 53 
```

The flank returns ranges of a specified width that flank, to the left (default) or right, each input range. One use case of this is forming promoter regions for a set of genes.

```
> flank(ir, width=seq_len(length(ir)))
IRanges object with 7 ranges and 0 metadata columns:
        start end width
    <integer> <integer> <integer>
    [1] 0 0 1
    [2] 6
    [3] 11 13 3
    [4] 11 14 4
    [5] 14 18 5
    [6] 28 33 
    [7] 33 [
```


2.8 Set Operations

Sometimes, it is useful to consider an IRanges object as a set of integers, although there is always an implicit ordering. This is formalized by NormallRanges, above, and we now present versions of the traditional mathematical set operations complement, union, intersect, and difference for IRanges objects. There are two variants for each operation. The first treats each IRanges object as a set and returns a normal value, while the other has a "parallel" semantic like pmin/pmax and performs the operation for each range pairing separately.

The complement operation is implemented by the gaps and pgap functions. By default, gaps will return the ranges that fall between the ranges in the (normalized) input. It is possible to specify a set of bounds, so that flanking ranges are included.

```
> gaps(ir, start=1, end=50)
```


An Overview of the IRanges package

Figure 5: Plot of gaps from ranges.

```
IRanges object with 3 ranges and 0 metadata columns:
            start end width
        <integer> <integer> <integer>
    [1] 30 33
    [2] 36 39
    [3] 47 50
> plotRanges(gaps(ir, start=1, end=50), c(1,50))
```

pgap considers each parallel pairing between two IRanges objects and finds the range, if any, between them. Note that the function name is singular, suggesting that only one range is returned per range in the input.

The remaining operations, union, intersect and difference are implemented by the [p]union, [p]intersect and [p]setdiff functions, respectively. These are relatively self-explanatory.

3 Vector Views

The IRanges package provides the virtual Views class, which stores a vector-like object, referred to as the "subject", together with an IRanges object defining ranges on the subject. Each range is said to represent a view onto the subject.

Here, we will demonstrate the RleViews class, where the subject is of class Rle. Other Views implementations exist, such as XStringViews in the Biostrings package.

3.1 Creating Views

There are two basic constructors for creating views: the Views function based on indicators and the slice based on numeric boundaries.

```
> xViews <- Views(xRle, xRle >= 1)
> xViews <- slice(xRle, 1)
> xRleList <- RleList(xRle, 2L * rev(xRle))
> xViewsList <- slice(xRleList, 1)
```

Note that RleList objects will be covered later in more details in the "Lists of Atomic Vectors" section of this document.

3.2 Aggregating Views

While sapply can be used to loop over each window, the native functions viewMaxs, viewMins, viewSums, and viewMeans provide fast looping to calculate their respective statistical summaries.

An Overview of the IRanges package

```
> head(viewSums(xViews))
```

[1] $11 \begin{array}{llllll} & 1 & 1 & 1 & 2\end{array}$
> viewSums(xViewsList)
IntegerList of length 2
[[1]] $11 \begin{array}{llllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 6 & 1 & 3 & 4 & \ldots & 12 & 6 & 37 & 10 & 8 & 11 & 6 & 4 & 5 & 1 & 1 & 5 & 1 & 1\end{array}$

> head(viewMaxs(xViews))
[1] 11111112
> viewMaxs(xViewsList)
IntegerList of length 2

4 Lists of Atomic Vectors

In addition to the range-based objects described in the previous sections, the IRanges package provides containers for storing lists of atomic vectors such as integer or Rle objects. The IntegerList and RleList classes represent lists of integer vectors and Rle objects respectively. They are subclasses of the AtomicList virtual class which is itself a subclass of the List virtual class defined in the S4Vectors package.

```
> showClass("RleList")
Virtual Class "RleList" [package "IRanges"]
Slots:
Name: elementType elementMetadata metadata
Class: character DataFrame_OR_NULL list
Extends:
Class "AtomicList", directly
Class "List", by class "AtomicList", distance 2
Class "Vector", by class "AtomicList", distance 3
Class "list_OR_List", by class "AtomicList", distance 3
Class "Annotated", by class "AtomicList", distance 4
Class "vector_OR_Vector", by class "AtomicList", distance 4
Known Subclasses: "SimpleRleList", "RleViews", "CompressedRleList"
```

As the class definition above shows, the R/eList class is virtual with subclasses SimpleRleList and CompressedRleList. A SimpleRleList class uses an ordinary R list to store the underlying elements and the CompressedRleList class stores the elements in an unlisted form and keeps track of where the element breaks are. The former "simple list" class is useful when the Rle elements are long and the latter "compressed list" class is useful when the list is long and/or sparse (i.e. a number of the list elements have length 0).

An Overview of the IRanges package

In fact, all of the atomic vector types (logical, integer, numeric, complex, character, raw, and factor) have similar list classes that derive from the List virtual class. For example, there is an IntegerList virtual class with subclasses SimpleIntegerList and CompressedIntegerList.
Each of the list classes for atomic sequences, be they stored as vectors or Rle objects, have a constructor function with a name of the appropriate list virtual class, such as IntegerList, and an optional argument compress that takes an argument to specify whether or not to create the simple list object type or the compressed list object type. The default is to create the compressed list object type.

```
> args(IntegerList)
function (..., compress = TRUE)
NULL
> cIntList1 <- IntegerList(x=xVector, y=yVector)
> cIntList1
IntegerList of length 2
[["x"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \ldots.. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[["y"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %.. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> sIntList2 <- IntegerList(x=xVector, y=yVector, compress=FALSE)
> sIntList2
IntegerList of length 2
[["x"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \ldots.. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[["y"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> ## sparse integer list
> xExploded <- lapply(xVector[1:5000], function(x) seq_len(x))
> cIntList2 <- IntegerList(xExploded)
> sIntList2 <- IntegerList(xExploded, compress=FALSE)
> object.size(cIntList2)
3 3 2 0 8 ~ b y t e s
> object.size(sIntList2)
2 9 4 0 1 6 ~ b y t e s
```

The length function returns the number of elements in a Vector-derived object and, for a List-derived object like "simple list" or "compressed list", the lengths function returns an integer vector containing the lengths of each of the elements:
> length(cIntList2)
[1] 5000
> Rle(lengths(cIntList2))

integer-Rle of length 5000	with 427	runs										
Lengths:	780	1	208	1	1599	1	\ldots	1	1	1	1	1
Values :	0	1	0	1	0	1	\ldots	10	9	6	9	12

An Overview of the IRanges package

Just as with ordinary R list objects, List-derived object support the [[for element extraction, c for concatenating, and lapply/sapply for looping. When looping over sparse lists, the "compressed list" classes can be much faster during computations since only the non-empty elements are looped over during the lapply/sapply computation and all the empty elements are assigned the appropriate value based on their status.

```
> system.time(sapply(xExploded, mean))
    user system elapsed
    0.032 0.000 0.032
> system.time(sapply(sIntList2, mean))
    user system elapsed
    0.033 0.000 0.033
> system.time(sapply(cIntList2, mean))
        user system elapsed
    0.034 0.000 0.034
> identical(sapply(xExploded, mean), sapply(sIntList2, mean))
[1] TRUE
```

```
> identical(sapply(xExploded, mean), sapply(cIntList2, mean))
```

> identical(sapply(xExploded, mean), sapply(cIntList2, mean))
[1] TRUE

```

Unlike ordinary \(R\) list objects, AtomicList objects support the 0ps (e.g. +, ==, \&), Math (e.g. log, sqrt), Math2 (e.g. round, signif), Summary (e.g. min, max, sum), and Complex (e.g. Re, Im) group generics.
```

> xRleList > 0
RleList of length 2
[[1]]
logical-Rle of length 10000000 with 197127 runs
Lengths: 780 1 208 1 1599 ... 1 91 1 927
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

```
[[2]]
logical-Rle of length 10000000 with 197127 runs
    Lengths: \(927 \quad 1 \quad 91 \quad 1 \quad 5 \ldots c \quad 1 \quad 208 \quad 1 \quad 780\)
    Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE
> yRleList <- RleList(yRle, \(2 L\) * rev(yRle))
> xRleList + yRleList
RleList of length 2
[[1]]
integer-Rle of length 10000000 with 1957707 runs
\begin{tabular}{lrlrlrlrllllllll} 
Lengths: 780 & 1 & 208 & 1 & 13 & 1 & 413 & \(\ldots\) & 5 & 1 & 91 & 1 & 507 & 1 & 419 \\
Values : & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \(\ldots\) & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{tabular}
[ [2]]
integer-Rle of length 10000000 with 1957707 runs
Lengths: \(419 \quad 15071191 \quad 1 \quad 5 \ldots 413 \quad 1 \quad 13 \quad 1208 \quad 1780\)

\section*{An Overview of the IRanges package}
```

 Values : 0 0 2 0 2 0 0 2 0 %.. 0
 > sum(xRleList > 0 | yRleList > 0)
[1] 2105185 2105185

```

Since these atomic lists inherit from List, they can also use the looping function endoapply to perform endomorphisms.
```

> safe.max <- function(x) { if(length(x)) max(x) else integer(0) }
> endoapply(sIntList2, safe.max)
IntegerList of length 5000
[[1]] integer(0)
[[2]] integer(0)
[[3]] integer(0)
[[4]] integer(0)
[[5]] integer(0)
[[6]] integer(0)
[[7]] integer(0)
[[8]] integer(0)
[[9]] integer(0)
[[10]] integer(0)
<4990 more elements>
> endoapply(cIntList2, safe.max)
IntegerList of length 5000
[[1]] integer(0)
[[2]] integer(0)
[[3]] integer(0)
[[4]] integer(0)
[[5]] integer(0)
[[6]] integer(0)
[[7]] integer(0)
[[8]] integer(0)
[[9]] integer(0)
[[10]] integer(0)
<4990 more elements>
> endoapply(sIntList2, safe.max)[[1]]
integer(0)

```

\section*{5 Session Information}

Here is the output of sessionInfo() on the system on which this document was compiled:
```

R Under development (unstable) (2022-10-25 r83175)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS

```

\section*{An Overview of the IRanges package}
```

Matrix products: default
BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets
[7] methods base
other attached packages:
[1] IRanges_2.33.0 S4Vectors_0.37.0 BiocGenerics_0.45.0
loaded via a namespace (and not attached):
[1] digest_0.6.30 fastmap_1.1.0 xfun_0.34
[4] knitr_1.40 htmltools_0.5.3 rmarkdown_2.17
[7] cli_3.4.1 compiler_4.3.0 tools_4.3.0
[10] evaluate_0.17 yaml_2.3.6 BiocManager_1.30.19
[13] rlang_1.0.6 BiocStyle_2.27.0

```
```

