Analysis of Bead Level Data using beadarray

Mark Dunning

October 2, 2006

Introduction

beadarray is a Bioconductor package for the analysis of expression data dervied using the Illumina BeadArray platform. The package is able to analyse data generated by Illumina's BeadStudio software as well as the raw data created when arrays are scanned.

In this document we will describe how to read raw Bead Level data from a BeadArray experiment. Due to the large files generated by a BeadArray experiment, we are not currently able to offer any example data for download. Also, reading raw data into memory requires at least 1 Gb of RAM at the present time.

1 Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning M, Smith M, Thorne NP, Tavaré, beadarray: An R package to Analyse Illumina BeadArrays, R News, submitted

2 Import

The following code shows how to read the raw data from a BeadChip into R. On this Chip we have 6 arrays where each array is made up 2 strips on the Chip surface. The raw data consists of a tif image scanned from each strip and an csv file which describes the position and identity of each bead on each strip. These csv files are required because of the random nature of BeadArrays which means we cannot rely on each position on the array having the same probe sequence attached. The tif images and csv files are produced by Illumina's BeadScan software. To produce the csv files, BeadScan version 3.1 is required. For more details see
http://www.damtp.cam.ac.uk/user/npt22
The function readBeadLevelData implements the image processing steps used by Illumina. However, both the sharpening and background correction steps are optional. We estimate a background for each bead by taking the average of the 5 dimmest pixels in a local area around each bead centre. However, we do not subtract this value automatically.

A targets file is required in order to define the location of the csv and tiff images. We also specify an ID for each array and the sample on that array. Note that readBeadLevelData can be used on data generated using either the SAM (96 well plates) or BeadChip technologies. The only difference is the way in which the targets file is defined. In the following example we are reading data from a BeadChip which consists of 12 strips with 24,000 genes on each. There are 6 samples on the chip with each 2 strips comprising each array. The 2 strips for each array have a different set of bead types attached and can therefore be analysed separately at this stage.

In this example data set we have three different samples, three samples supplied by Illumina (I), three tumour samples (P) and three normals (Norm). This BeadChip is part of the same example set
supplied in the BeadSummaryExamples zip file and described in the the Analysis of Bead Summary Data using beadarray vignette.

```
> library(beadarray)
> targets <- readBeadTargets("targets.txt")
> targets
> BLData <- readBeadLevelData(targets)
```


3 The BLData object

BLData is a type of list object and similar to the RGList objects found in limma. The list contains a number of matrices which hold information for each bead over all strips on the BeadChip. Note that due to random placement of beads each row will not always correspond to the same gene, unlike the RGList objects of limma, therefore we have to store ProbeID which gives the identity of each bead.

The slots in BLData can be subset in the usual way.

```
> is(BLData)
```

```
[1] "BeadLevelList"
```

> class(BLData)
[1] "BeadLevelList"
attr(,"package")
[1] "beadarray"
> slotNames(BLData)
[1] "G" "R" "Rb" "Gb" "GrnY" "GrnX" "ProbeID"
[8] "targets"
> dim(BLData@G)
[1] $1164798 \quad 4$
> BLData@G[1:5,]

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	658.8324	649.9646	742.4284	707.2222
$[2]$,	1138.5864	646.5080	788.2053	703.6667
$[3]$,	3726.4027	648.9603	654.2679	718.5514
$[4]$,	904.4705	654.5395	648.0932	693.5556
$[5]$,	703.1498	727.2521	745.9367	677.7221

Boxplots can be used to compare foreground and background intensities between arrays. In this example we can see very little variation between arrays. Notice that the background level appears to be virtually constant both for beads on the same array and between arrays.

Background correction can be performed by the backgroundCorrect and the default settings to the function subtract the background estimate for each bead from the foreground. In this example we use the minimum method which stops any negative values from being calculated.

```
> par(mfrow = c(1, 3))
> boxplot(as.data.frame(log2(BLData@G[1:10000, 1:4])), las = 2,
+ names = as.character(BLData@targets[, 4]))
```

```
> boxplot(as.data.frame(log2(BLData@Gb[1:10000, 1:4])), las = 2,
+ names = as.character(BLData@targets[, 4]))
> BLData.bc = backgroundCorrect(BLData, method = "minimum")
> boxplot(as.data.frame(log2(BLData.bc@G[1:10000, 1:4])), las = 2,
+ names = as.character(BLData@targets[, 4]))
```


4 Bead Level Analysis

We can plot the position and location of the replicates for a particular bead type using the following code. Each BeadArray is produced using a random sampling mechanism, therefore we would expect the placement of each bead type on an array to be random.

We can also produce boxplots of bead intensities using plotBeadIntensities. This function takes a list of ProbeIDs and arrays as arguments and produces a boxplot for each bead type on each array grouping ProbeIDs on the same array together. Any red dots on a boxplot indicate the outliers for the bead type, these are any beads outside a 3 MAD cut-off from the mean for the bead type and are excluded from analysis. Illumina use the unlogged bead intensities for this outlier removal and this is the default option in beadarray.

```
> par(mfrow = c(1, 2))
> plotBeadLocations(BLData, array = 1, ProbeIDs = 50020, SAM = FALSE)
> plotBeadIntensities(BLData, arrays = 1, ProbeIDs = 50020, ylim = range(9,
+ 14))
```


In the following code we show how to plot the intensities of three different bead types on two separate arrays in the experiment. For this particular example we have to remember that all odd-numbered arrays in the experiment contain RefSeq genes whereas the even-numbered arrays contain Supplemental genes, therefore we plot the intensities of the beads on the first and third arrays.

```
> ids = unique(BLData@ProbeID[, 1])[2:5]
> ids
```

[1] 50008500145001750020

```
> ProbeCols = c("red", "orange", "blue", "yellow")
> plotBeadIntensities(BLData, arrays = c(1, 3), ProbeIDs = ids,
+ ylim = range(9, 15), ProbeCols = ProbeCols)
> legend(6.5, 15, ids, ProbeCols)
> text(1, 15, as.character(targets[1, 1]))
> text(5, 15, as.character(targets[3, 1]))
```


We can repeat the outlier analysis shown above for all bead types on an array using findAllOutliers. The result of this function is a list of row indices to BLData to identify which beads on the given array are outliers. Typically we find that the number of outliers on an array is less than 10% and both the number and location of outliers can be used as a useful diagnostic tool.

```
> o = findAllOutliers(BLData, array = 1)
> o[1:10]
[1] 81823818458188981894818988195681973820108203382037
> length(o)/nrow(BLData@G)
[1] 0.03751723
```

```
> par(mfrow = c(2, 1))
```

> par(mfrow = c(2, 1))
> par(mar =c(1, 1, 1, 1))

```
> par(mar =c(1, 1, 1, 1))
```

```
> for (i in 1:2) {
+ o = findAllOutliers(BLData, array = i)
+ plotBeadLocations(BLData, BeadIDs = o[1:1000], array = i,
+ SAM = FALSE, cex = 0.5, col = "red", pch = 16)
+ }
```


Arrays with a high proportion of outliers might be explained by areas of an array with unusually high background or foreground. Such regions can also be investigated by using image plots. To produce these plots we divide the array up into rectangles with a defined number of rows of columns. On the plot, the colour of the rectangle is the average of all beads lying inside that rectangle.

```
> par(mfrow = c(2, 1))
> for (i in 1:2) {
+ imageplot(BLData, array = i, nrow = 200, ncol = 20, zlim = range(9,
+ 11))
```


The defaultoptions for BLImagePlot plot average over the foreground intensities inside each rectangle. The number of rows and columns to divide the array into can be changed by using nrow and ncol parameters. By using the whatToPlot argument we can also plot background or values contained in any other slot in BLData. The colours used to plot low and high values can be changed by low and high respectively whereas zlim specifies which values to associate with these colours. Setting zlim to the same value for a series of plots allows imageplots to be compared more easily.

```
> par(mfrow = c(2, 1))
>for (i in 1:2) {
+ imageplot(BLData, array = i, nrow = 200, ncol = 20, what = "Gb",
+ low = "yellow", high = "red", zlim = range(9, 10))
+ }
```


The createBeadSummaryData function can be used to summarise the values for each probe. Unlike Affymetrix technoloy, each replicate of a bead contains the same probe sequence and therefore using a straight average of the replicates should be valid. Outliers are removed using a cut-off of 3 MADS and the mean of the remaining beads is used as the summary value. At this point we combine the two strips for each array by using the imagesPerArray argument, leaving us with 6 columns now instead of 12 . The createBeadSummaryData function can be used to summarise the values for each probe. Outliers are removed using a cut-off of 3 MADS and the mean of the remaining beads is used as the summary value. At this point we combine the two strips for each array by using the imagesPerArray argument, leaving us with 6 columns now instead of 12 .

```
> BSData = createBeadSummaryData(BLData, imagesPerArray = 2)
```

The default settings for createBeadSummaryData assume that the same probes are to be found on each array in the experiment as this will be true in general. At present, createBeadSummaryData is a memory intensive operation and requires at least 1 Gb of RAM.

The BSData can be analysed using functionality described in the Analysis of Bead Summary Data vignette.

5 Normalisation

As noted previously, BeadArrays are able to produce large data sets which are difficult to handle without large amounts of RAM available. Ideally, for normalisation we would like to the full bead level data to correct for effects between and within arrays. The BeadLevelNormalise function combines the data reading, normalisation and probe summary steps into one function. Each array is read in turn, normalised according to some target distribution and then summarised. Therefore one only need to read one array into memory at a time. The target distribution used for normalisation can be defined by the user, otherwise it is calculated to be the mean quantiles across all arrays. Note that quality control steps should be performed prior to normalisation and any defective arrays should be removed from the targets file.
> BSData.BLNorm = BeadLevelNormalise(targets, backgroundCorrect = "none")

