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Introduction

There are two methods for describing the results of a BeadArray experiment. Firstly, we can use
bead-level data whereby the position and intensity of each individual bead on an array is known. The
methods available for processing bead level data are discussed in: Dunning,M.J et al, Quality Control
and Low-level Statistical Analysis of Illumina Beadarrays, Revstat 4, 1-30 and in a separate vignette of
beadarray.

Bead summary data can also be used whereby a summary intensity for each bead type on an array is
given. The summarised values for a particular bead type can then be compared between different arrays
within an experiment. This is the format of the data output by Illumina’s BeadStudio application. The
methods described within this document are for the analysis of bead summary data which can be
obtained using either the BeadChip (6 or 8 arrays on a slide) or SAM (arrays organised in 96 well
plates) technologies.

At present, beadarray is for the analysis of Illumina expression data only. For a package to analyse
Illumina SNP data, see beadarraySNP.

1 Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning M, Smith M, Thorne NP, Tavaré, beadarray: An R package to Analyse Illumina BeadArrays,

R News, submitted

2 Importing Bead Summary Data

An example data set is included with the beadarray package and can be found as a zipped folder data
directory of the beadarray download. Inside this folder you will find three Excel data files and two text
files. The Excel files are the raw non-normalised data, a sample sheet and a quality control file for an
example experiment. These data were obtained as part of a pilot study into BeadArray technology and
comprises of 3 Human-6 BeadChips with 6 different samples, I, MC, MD, MT, P and Norm hybridised.
MC, MD, MT and P are all tumours whereas Norm is a normal sample and I is a sample provided by
Illumina.

2.1 Description of Files

Reading bead summary data into beadarray requires the three files as given for this example experiment
and we now describe these in more detail.

� raw data.csv - This contains the raw, non-normalised bead summary values as output by Bead-
Studio and is readable by Excel. Inside the file are several lines of header information followed
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by a data matrix with some 48,000 rows. Each row is a different gene in the experiment and
the columns give different measurements for the gene. For each array, we record the summarised
expression level (AVG Signal), standard error of the bead replicates (BEADSTDEV), Number of
beads used (Avg NBEADS) and a Detection score which estimates the probability of a gene being
detected above the background. Note that whilst this data has not been normalised, it has been
subjected to local background correction at the bead level prior to summarising.

� raw data sample sheet - Defines the array IDs and samples placed on each array. In order for this
information to be read into beadarray, we require that the 4th column is a unique identifier for
each array in the experiemnt.

� raw data qc info - Gives the summarised expression values for each of the controls that Illumina
place on arrays and hence extremely useful for diagnostic purposes. Each row in the file is a
different array and the columns give average expression, standard error and detection for various
controls on the array. See Illumina documentation for descriptions of control types.

The following code can be used to read the example data into R. Firstly, we have to use the
targets.txt file to define the location of the raw data, sample sheet and quality control file. Once this
targets information has been read into R we can simply run the function readBeadSummaryData. The
default parameters for this function will look for the column headings as described above.

> targets <- readBeadSummaryTargets("targets.txt")

> targets

> BSData <- readBeadSummaryData(targets)

> BSData <- readBeadSummaryData(targets)

3 The BSData object

BSData is an object of type ExpressionSetIllumina which is an extension of the ExpressionSet class
developed by the Biocore team used as a container for high-throughput assays. The data from the
the raw data file has been written to the assayData slot of the object, whereas the phenoData slot
contains information from sample sheet and the QC slot contains the quality control information. For
consistency with the definition of other ExpressionSet objects, we now refer to the expression values as
the exprs matrix which can be accessed using exprs and subset in the usual manner. The BeadStDev
matrix can be accessed using se.exprs. The rows of exprs are named according to the row names of
the original raw data file.

> BSData

Instance of ExpressionSetIllumina

assayData
Storage mode: list
Dimensions:

BeadStDev Detection exprs NoBeads
Features 47293 47293 47293 47293
Samples 18 18 18 18

phenoData
rowNames: I.1, IC.1, IH.2, ..., Norm.2, P42.2 (18 total)
varLabels and descriptions:
Sample_Name: Sample_Name
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Sample_Well: Sample_Well
Sample_Plate: Sample_Plate
Sample_Group: Sample_Group
Pool_ID: Pool_ID
Sentrix_ID: Sentrix_ID
Sentrix_Position: Sentrix_Position

featureData
featureNames: GI_10047089-S, GI_10047091-S, GI_10047093-S, ..., thrB, trpF (47293 total)
varLabels and descriptions:

Experiment data
Experimenter name:
Laboratory:
Contact information:
Title:
URL:
PMIDs:
No abstract available.

Annotation [1] "Illumina"
QC Information
Available Slots: Signal StDev Detection
featureNames: 1475542110_F, 1475542113_E, 1475542114_A, ..., 1475542113_D, 1475542113_F
sampleNames: Biotin, cy3_high, cy3_low, ..., pm, negative

> exprs(BSData)[1:10, 1:2]

I.1 IC.1
GI_10047089-S 87.8 131.8
GI_10047091-S 161.8 130.8
GI_10047093-S 481.2 401.4
GI_10047099-S 633.7 483.8
GI_10047103-S 1535.6 1186.5
GI_10047105-S 247.5 210.2
GI_10047121-S 113.0 101.3
GI_10047123-S 453.9 306.8
GI_10047133-A 103.6 114.5
GI_10047133-I 118.0 123.1

> se.exprs(BSData)[1:10, 1:2]

AVG_Signal.I.1 AVG_Signal.IC.1
GI_10047089-S 5.1 9.5
GI_10047091-S 12.0 7.9
GI_10047093-S 21.7 24.5
GI_10047099-S 21.6 20.9
GI_10047103-S 42.7 34.5
GI_10047105-S 12.7 11.8
GI_10047121-S 6.4 8.1
GI_10047123-S 14.0 13.1
GI_10047133-A 6.8 6.0
GI_10047133-I 5.6 7.2
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> pData(BSData)[, 1:6]

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID Sentrix_ID
I.1 NA NA NA IH-1 NA 1475542114
IC.1 NA NA NA IC-1 NA 1475542114
IH.2 NA NA NA IH-2 NA 1475542114
MC.1 NA NA NA MC-1 NA 1475542114
MD.1 NA NA NA MD-1 NA 1475542114
MT.1 NA NA NA MT-1 NA 1475542114
IC.2 NA NA NA IC-2 NA 1475542110
IH.3 NA NA NA IH-3 NA 1475542110
IC.3 NA NA NA IC-3 NA 1475542110
P.3 NA NA NA P-3 NA 1475542110
P.3.1 NA NA NA P-3 NA 1475542110
Norm.1 NA NA NA Norm-1 NA 1475542110
MC.2 NA NA NA MC-2 NA 1475542113
MD.2 NA NA NA MD-2 NA 1475542113
MT.2 NA NA NA MT-2 NA 1475542113
P42.1 NA NA NA P-1 NA 1475542113
Norm.2 NA NA NA Norm-2 NA 1475542113
P42.2 NA NA NA P-2 NA 1475542113

Boxplots of expression may be useful for quality control. Below we show the code to produce boxplots
of the log2 intensities of each array in the experiment. Recall that there are 6 arrays per BeadChip
and that differences between chips hybridisations on different days may be expected. In this example
the differences in intensity between arrays on the same chip and different chips do not seem too large.
However, we can see that the first BeadChip seems to be more variable than the others and in particular
the third array on the first BeadChip could be an outlier.

Boxplots of the other slots in BSData can be easily plotted. 1

> par(mfrow = c(1, 2))

> boxplot(log2(exprs(BSData)[1:1000, ]), las = 2)

> boxplot(NoBeads(BSData)[1:1000, ], las = 2)
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1We have restricted the number of points plotted in order to keep the size of this vignettee small.
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4 Normalisation and Quality Control

In the expression boxplots we notice that there are differences in expression level across a chip and
between chips. Therefore we might want to normalise the arrays in the experiment comparable. We
also see the the 3rd array has significantly different intensity. The sample on this array is replicated
three times on the first chip, so comparing the MA and XY plots for the replicates of this sample can
be informative.

Particular genes of interest may be highlighted on the MA and XY plots by using the genesToLabel
argument which should match up with the row names in BSData. The labelCol argument can be used
to specify a colour for each gene. For simplicity sake we simply highlight the first ten genes in the
expression matrix, a possible application might be to highlight control genes on the plot or particular
genes of interest.

> g = rownames(exprs(BSData))[1:10]

> g

[1] "GI_10047089-S" "GI_10047091-S" "GI_10047093-S" "GI_10047099-S"
[5] "GI_10047103-S" "GI_10047105-S" "GI_10047121-S" "GI_10047123-S"
[9] "GI_10047133-A" "GI_10047133-I"

> cols = rainbow(start = 0, end = 5/6, n = 10)

> plotMAXY(exprs(BSData)[1:1000, ], arrays = 1:3, genesToLabel = g,

+ labelCols = cols)
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In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On
an MA plot, for each gene we plot the average of the expression levels on the two arrays on the x axis
and the difference in the measurements on the y axis. For replicate arrays we would expect all genes to
be unchanged between the two samples and hence most points on the plot to lie along the line y=0. In
the lower left corner of the MAXY plot we see the XY plot and for replicate arrays we would expect to
see most points along the diagonal y = x. From this MAXY plot it is obvious that the third array is
significantly different to the other replicates and requires normalisation.
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Both XY and MA plots for a particular comparison of arrays are available separately using plotXY
and plotMA

The quality control information which is read in by readBeadSummaryData can be plotted to provide
useful diagnostic information. To retrieve this quality control data we can use the QCInfo function.
Alternatively, quality control information can be read using readQC.

The QC object contains Signal, StDev and Detection matrices with each row in the matrix being
a different array and each column a different control type. An overview of QC can be plotted using
plotQC.

> QC = QCInfo(BSData)

> QC$Signal[1:3, ]

Biotin cy3_high cy3_low cy3_med gene hs house labeling
1475542110_F 7551.0 32436.0 816.6 11178.2 205.8 29498.3 7914.2 92.9
1475542113_E 6137.2 28081.0 739.4 9158.1 176.6 23302.4 6680.7 86.1
1475542114_A 10255.0 41451.7 1040.9 13176.7 320.3 30390.5 15902.3 106.0

mm pm negative
1475542110_F 3584.5 21807.1 94.4
1475542113_E 1516.5 18619.5 88.6
1475542114_A 5738.7 27314.2 108.7

> plotQC(BSData)
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The singleQCPlot function allows a particular control type to be plotted across all samples. The
type argument must match one of the column names of QC$Signal and the what argument selects which
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of the Signal, StDev and Detection slots to plot. Additional plotting arguments such as a title for the
plot, plotting character etc can also be passed to the function. We can also choose to plot on the log2

scale.

> par(mfrow = c(1, 3))

> singleQCPlot(BSData, type = "negative", main = "Negative Control Signal",

+ what = "Signal")

> singleQCPlot(BSData, type = "Biotin", log = TRUE, pch = 16, col = "red",

+ lwd = 2, lty = 2, what = "StDev", main = "log2 Biotin Signal")

> singleQCPlot(BSData, type = "Biotin", pch = 16, col = "red",

+ lwd = 2, lty = 2, what = "StDev", main = "Biotin Variability")
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Illumina also use this quality control information to normalise bead summary data. In a procedure
known as background normalisation, the averaged values of all negative controls on a particular array
are subtracted from the summarised expression of each gene. This normalisation can be repeated by
the function backgroundNormalise. The intended effect of this normalisation is to remove the effects
of non-specific binding from the expression values. This effect is more noticable for genes with low
expression level and hence can produce negative values.

> BSData.bgnorm = backgroundNormalise(BSData)

> range(exprs(BSData)[, 1])

[1] 65.9 45311.7

> range(exprs(BSData.bgnorm)[, 1])

[1] -142.7 45221.5
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> boxplot(log2(exprs(BSData.bgnorm)[1:1000, ]), las = 2)
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It is possible to use the normalisation methods available in the affy such as quantile, qspline or
others. The method of rank invariant normalisation recommended by Illumina may also be applied
once a suitable target distribution has been defined. In the following example we define this to be the
mean of each row before using the normalize.invariantset to find a set of invariant genes and define
a normalising curve using this set and the target distribution.

> library(affy)

> BSData.quantile = assayDataElementReplace(BSData, "exprs", normalize.quantiles(as.matrix(exprs(BSData))))

> BSData.qspline = assayDataElementReplace(BSData, "exprs", normalize.qspline(as.matrix(exprs(BSData))))

> T = apply(exprs(BSData.bgnorm), 1, mean)

> BSData.rankinv = assayDataElementReplace(BSData.bgnorm, "exprs",

+ rankInvariantNormalise(exprs(BSData.bgnorm), T))

5 Differential Expression

Research into the best method for detecting differential expression for BeadArray data is still work in
progress. In the meantime, users are able to use the lmFit and eBayes functions from limma on the
matrix exprs(BSdata) with a log2 transformation applied.

The following code shows how to set up a design matrix for the example experiment combining the
I, MC, MD, MT, P and Normal samples together. We then define contrasts comparing the I samples to
the P samples and I to Normal and perform an empirical bayes shrinkage. In this particular experiment,
the I and P samples are completely different so we would expect to see plenty of differentially expressed
genes.

8



For more information about lmFit and eBayes please see the comprehensive limma documentation.

> design = matrix(nrow = 18, ncol = 6, 0)

> colnames(design) = c("I", "MC", "MD", "MT", "P", "Norm")

> design[which(strtrim(colnames(exprs(BSData)), 1) == "I"), 1] = 1

> design[which(strtrim(colnames(exprs(BSData)), 2) == "MC"), 2] = 1

> design[which(strtrim(colnames(exprs(BSData)), 2) == "MD"), 3] = 1

> design[which(strtrim(colnames(exprs(BSData)), 2) == "MT"), 4] = 1

> design[which(strtrim(colnames(exprs(BSData)), 1) == "P"), 5] = 1

> design[which(strtrim(colnames(exprs(BSData)), 1) == "N"), 6] = 1

> design

I MC MD MT P Norm
[1,] 1 0 0 0 0 0
[2,] 1 0 0 0 0 0
[3,] 1 0 0 0 0 0
[4,] 0 1 0 0 0 0
[5,] 0 0 1 0 0 0
[6,] 0 0 0 1 0 0
[7,] 1 0 0 0 0 0
[8,] 1 0 0 0 0 0
[9,] 1 0 0 0 0 0
[10,] 0 0 0 0 1 0
[11,] 0 0 0 0 1 0
[12,] 0 0 0 0 0 1
[13,] 0 1 0 0 0 0
[14,] 0 0 1 0 0 0
[15,] 0 0 0 1 0 0
[16,] 0 0 0 0 1 0
[17,] 0 0 0 0 0 1
[18,] 0 0 0 0 1 0

> fit = lmFit(log2(exprs(BSData)), design)

> cont.matrix = makeContrasts(IvsP = I - P, IvsNorm = I - Norm,

+ PvsNorm = P - Norm, levels = design)

> fit = contrasts.fit(fit, cont.matrix)

> ebFit = eBayes(fit)

> topTable(ebFit)

ProbeID IvsP IvsNorm PvsNorm F P.Value
9259 GI_28302130-S 7.499572 7.361939 -0.137632534 937.0935 0.000000e+00
9260 GI_28302132-S 7.694362 7.544722 -0.149640427 985.6984 0.000000e+00
9258 GI_28302129-S 6.402578 6.512401 0.109823045 699.3457 1.896739e-304
24442 GI_6633805-S 6.288645 6.355043 0.066398690 671.6779 1.967835e-292
25430 GI_8392890-S 6.512861 5.830264 -0.682596858 669.7313 1.378516e-291
21840 GI_4501988-S 6.067112 5.813525 -0.253586595 604.0850 4.458776e-263
31186 Hs.449602-S 6.605590 1.619840 -4.985750409 598.4842 1.206731e-260
19978 GI_42542384-S 5.726441 5.629671 -0.096770366 546.8808 3.109321e-238
2128 GI_15149480-S -5.669899 -5.671313 -0.001414323 542.2465 3.201302e-236
22143 GI_4503886-S 5.617491 5.751247 0.133756180 540.7956 1.366055e-235

adj.P.Val
9259 0.000000e+00
9260 0.000000e+00
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9258 2.990083e-300
24442 2.326621e-288
25430 1.303883e-287
21840 3.514482e-259
31186 8.152844e-257
19978 1.838114e-234
2128 1.682213e-232
22143 6.460483e-232

The algorithm for the Illumina method is implemented in the function DiffScore although it not
completely accurate at present. To compare array 1 in the experiment to array 10 (ie comparing an I
sample to a P) we would use the following code. At present, the DiffScore is only able to make pairwise
comparisons between arrays. Notice that some genes appear in both the top lists of the empirical bayes
methods and the Illumina method.

> df = DiffScore(BSData, QC, cond = 10, ref = 1)

> o = order(abs(df), decreasing = TRUE)[1:50]

> o[1:20]

[1] 9259 9260 31186 25430 9258 24442 21840 21844 5569 22143 19978 21864
[13] 25150 12104 22144 22269 21865 23042 5821 7612

6 Further Analysis

The clustering functionality available in BeadStudio can be easily performed through R using the hlcust
once a distance matrix has been defined. In this example we see that the clusters correspond well to
the different sample types. The heatmap function could also be used in a similar manner and principal
components analysis is possible using princomp.

> d = dist(t(exprs(BSData)))

> plclust(hclust(d), labels = rownames(pData(BSData)))
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