
HowTo set up a simple R repository

Jeff Gentry

April 25, 2006

1 Overview

This article demonstrates how you can make use of the reposTools package
available in the Bioconductor project to quickly and easily create a R repository
for distribution of your files to other R users. To do this, you will need the
reposTools package. This package must be installed for your version of R and
when you start R you must load with the library command.

> library(reposTools)

For the purposes of this vignette, we will be using a sample directory that
comes with reposTools to create a small repository.

2 Initial setup of repository structure

The first step to create a repository is to have a directory on the local system
that contains the files you want to distribute. This directory should reside in a
world readable file system (e.g. web space), or it will have to be moved to such
a location later on. The specific method of accomplishing this depends on your
OS, etc.

3 Creation of a vanilla repository

For most situations, a repository can be created with a single command. With
the directory you want to use as a repository as your R working directory:

> genRepos("Test Repository", "http://biowww.dfci.harvard.edu/~jgentry/",

+ "newRepos")

Loading required package: XML
$repName
[1] "Test Repository"

$repType

1



[1] "package"

$repaddrBase
[1] "http://biowww.dfci.harvard.edu/~jgentry/"

$repaddrPath
[1] "newRepos"

$repRelLevel
[1] "release"

$repDir
[1] "."

The actual signature of the function (with explanation of the parameters)
is: genRepos(reposName, urlBase, urlPath, dir=”.”)

reposName: Identifying name of the repository ("Test Repository")
urlBase: A base URL for your repository (e.g. "http://cran.r-project.org").

This can also be a symbolic name (e.g. "CRAN"), which if that
symbol exists in the client's "repositories" option, the URL
that maps to the symbol will be used instead.

urlPath: The file path from the base URL. ("newRepos") Pasted on to
the urlBase. (http://biowww.dfci.harvard.edu/~jgentry/newRepos)
Mainly useful if a symbolic name is used in urlBase. (If
using the symbol CRAN for instance, to promote mirroring,
urlPath would have the path from the user's CRAN option).

dir: The directory to use to construct a repository. The default is
the current directory.

At this point, there will be two new files constructed in your repository
directory:

> dir()

[1] "goodbyeWorld_1.0.tar.gz" "helloWorld_1.0.tar.gz"
[3] "html" "PACKAGES"
[5] "PACKAGES.gz" "repdatadesc.rda"
[7] "replisting" "repThemes.rda"

The repdatadesc.rda file is a database file which contains all the detailed
information about all your distributable files. The ’replisting’ file contains infor-
mation about your repository itself. At this point, others can now access your
repository using the client side repository tools if you provide them your URL.

4 Repository themes

Repository themes are a concept which allows repository maintainers to specify
groupings of packages together which can be downloaded as a single entity. This

2



allows for maintainers of repositories with many packages to specify smaller
clusters of packages as being meaningfully connected, and in a sense provides
subrepositories (For a description of actual subrepositories, see the next section).

A repository theme is defined as one or more packages that are contained
within a repository which are grouped together under a particular theme name.
They are defined by the repository maintainer with an XML file reposThemes.xml,
which is then read in by the genRepos function and the resulting R structures
are stored in the control file reposThemes.rda which is used by the client func-
tions to determine what themes are available and what they contain. Repository
maintainers can choose to author the XML file themselves, or use the function
writeThemesXML.

The XML structure of the reposThemes.xml file is straightforward. The
repositoryThemes tag defines the primary XML block that is specifying the
themes for a particular repository. Since every repThemes.xml file corresponds
to a particular repository, there should only be one of these blocks per file, and
it should contain all other XML information.

Every individual theme is contained in a theme tag block. Every theme for
this particular repository needs to be defined as a theme block. Within every
theme are two main subblocks: The themeName tag block specifies the name
of the theme and the themePackages tag block specifies what packages are
contained within that theme. Inside of the themePackages tag block are a series
of package tag blocks, one for every package in the theme. The package blocks
contain one or two tags each. Every package block has a packageName tag block
specifying the name of the package, and there is an optional packageVersion
tag which allows the maintainer to specify a particular version of that package.
If no version is specified, the highest available version of that package in the
repository is used.

An exapmle of a simple repository theme is provided, with three packages
and where two of the packages have specified versions and one does not.

<?xml version="1.0"?>
<repositoryThemes>

<theme>
<themeName>Testing</themeName>
<themePackages>
<package>
<packageName>Biobase</packageName>

<packageVersion>1.4.2</packageVersion>
</package>
<package>
<packageName>ROC</packageName>

</package>
<package>
<packageName>Ruuid</packageName>
<packageVersion>1.3.3</packageVersion>

</package>

3



</themePackages>
</theme>

</repositoryThemes>

The writeThemesXML function takes in a list, where each element’s name
corresponds to the name of a theme. Each element in turn contains a list where
every element is either a package name or a pkgInfo object. The latter case is
used for situations where the maintainer wishes to specify a particular version
for a package.

> themeList <- list(Theme1 = list("Biobase", "Ruuid", "ROC", "geneplotter"),

+ Theme2 = list(buildPkgInfo("annotate", "1.3.0"), "genefilter",

+ buildPkgInfo("affy", "1.3.0")))

> outFile <- tempfile()

> writeThemesXML(themeList, outFile)

Here we have used a non-default output file due to specifics of vignette
creation, so in most normal cases one would only use the first parameter. We
are also showing here the contents of the generated XML file.

5 Linking in subrepositories

If you have other repositories that are logically connected , or if you would simply
like to link in other repositories to your own (recall that the client software will
search through any of the server’s known repositories if it fails to find something
in the server repository itself), you can do this by editing the ’replisting’ file.

This file is in DCF format (see below), with the following structure for each
known repository (all these fields match up with the corresponding argument
to genRepos() above:

repname: <repository name>
reptype: <repository type>
repaddrBase: <URL base>
repaddrPath: <path from URL base>

A blank line is used as a separater between two entries. You’ll notice that
there is already one entry with the information you entered in genRepos. Leave
this as the first entry, if you want to link in other repositories, append their
entry to the listing - you’ll have to edit this file by hand though as there are not
currently any tools for doing this automatically.

6 DCF Format

As mentioned above, these files use a format known as DCF. To provide you with
some background on this format, the following is provided from help("read.dcf"):

4



DCF is a simple format for storing databases in plain text files
that can easily be directly read and written by humans. DCF is
used in various places to store R system information, like
descriptions and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one
or more named fields. Not every record must contain each
field.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form `tag:value', i.e., have a name
tag and a value for the field, seperated by `:' (only the
first `:' counts). The value can be empty (=whitespace
only).

4. Lines starting with whitespace are continuation lines (to
the preceding field) if at least one character in the line
is non-whitespace.

5. Records are seperated by one or more empty (=whitespace
only) lines.

R provides a good amount of functionality for handling DCF files. To get
started, see the functions read.dcf.

7 Notes On Repository Clients

This section will provide a brief overview of how the client repository tools inter-
act with your repository server. A client will have a set of repository locations
as well as a set of objects to obtain. Progressing down the list of repositories,
they will download each server’s repdatadesc.rda file and examine it to see if
that repository contains what they are looking for. They optionally will then
look at any subrepositories known by the server before moving on to the next
repository on their list.

If the client finds their desired object, it will obtain the proper file URL
from the repdatadesc.rda file, download it and use it to install/update/etc
according to their wishes. The client uses automatic library management, and
will keep track of what packages the user has installed, the versions of those
packages, etc.

For more information on the repository client functionality, please see the
vignette HowTo Access A File Repository.

5


	Overview
	Initial setup of repository structure
	Creation of a vanilla repository
	Repository themes
	Linking in subrepositories
	DCF Format
	Notes On Repository Clients

