
goCluster - Developers Manual

Gunnar Wrobel

April 25, 2006

Biozentrum & Swiss Institute of Bioinformatics Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland,
http://www.biozentrum.unibas.ch/personal/primig/gocluster/

1 Introduction

goCluster provides a framework that can be extended by modules of different types. This structure
allows to significantly decrease the amount of time necessary to adapt an analysis script to the relevant
biological question.

A goCluster -object is split into six subsections that each handle one aspect of the functional data
analysis:

1. Data (clusterData): Holds the dataset that is being analyzed.

2. Annotation (clusterAnnotation): Handles retrival of annotation terms that describe the genes in
the given dataset.

3. Algorithm (clusterAlgorithm): Responsible for clustering or partitioning the dataset into different
subgroups. The subgroups may be overlapping or non-overlapping.

4. Statistic (clusterStatistic): Performs the main statistical analysis and will generate p-values for
the annotation terms found in the subgroups generated by the clustering algorithm.

5. Significance (clusterSignif): Necessary for multiple testing correction. Usually a high number
of different annotation terms will be analyzed and to prevent identifying a high number of false
positive terms a correction is needed.

6. Visualization (clusterVisual): Visualizes the result once a dataset has been analyzed.

Each of these sections is represented by its own class (the name is given in parantheses). A module
that is supposed to fill one of the sections with the required functionality needs to be derived from the
corresponding class (e.g. a module that provides a new type of clustering algorithm needs to extend
the class clusterAlgorithm).

All six classes mentioned above also derive from one common class, the clusterModule-class, that
provides features common to all of the derived classes (e.g. configuration capabilities).

The following sections will illustrate the most important features of the goCluster framework. The
final section adds a short introduction on how to include a new module.

2 clusterModule

setClass("clusterModule",

representation(## Interactive configuration

1

http://www.biozentrum.unibas.ch/personal/primig/gocluster/

config = "list",

Non-interactive config checks

setup = "list",

Main function of the class

execute = "function",

A list of protected slots

reset = "list",

A list of children

children = "list"

)

)

The clusterModule class defines several slots that hold information for the main functions that can
be used with a goCluster -object (e.g. config, execute,...). The different slots will be described in greater
detail in the subsequent sections.

In order to extend goCluster with a new module it is not mandatory to fill each of these slots. In
many cases it will be sufficient to define a function for the execute-slot in order to provide a new type
of functionality that is not yet included in goCluster.

3 clusterData

setClass("clusterData",

representation(

An arbitrary name for the dataset

name = "character",

The annotation of the dataset

anno = "clusterAnnotation"

),

prototype(config = list(

name =

function (object)

{

selectCore("Please select a name or title for the dataset.")

}

),

setup = list(

name =

function(X, object)

{

if (!is.character(X) || !length(X) > 0)

stop("The name of the dataset should be a short string!")

}

),

children = list(

list(slot = "anno",

description = "annotation data",

execute = TRUE

)

)

),

2

contains = "clusterModule"

)

The data section is the only part of goCluster that is not intended to be extensible since the data
analysis is based on a standard exprSet-object as defined in the Bioconductor core packages.

Nevertheless the definition of the class given above demonstrates how the basic clusterModule class
is extended into one of the six main classes that are used to construct the goCluster framework. The
actual definition of the clusterData class is more complex but ispresented in a reduced form here in
order to remain illustrative.

The representation section adds new slots that are specific to the clusterData class. Here the name
entry and the anno slot are being defined. Since the name is an entry that should be specified by the
user during configuration of the goCluster object, the prototype defines config to be a list that contains
a function with the same name. This entry will later be used by the generic config-function to request
the information from the user. The same approach is used for the setup entry. The functions defined
here will be used to verify user input for the corresponding slots.

The list specified for the children-slot will be used internally by the goCluster -object in order to
dispatch function calls to children classes.

4 clusterAnnotation

Modules that are intended to provide new types of annotation whithin the goCluster framework can
store their annotation in the annoset slot of a clusterAnnotation object. The annoset slot needs to be
a list that holds one or more matrices with two columns. Each matrix links the unique identifiers of
the expression dataset with the corresponding annotation terms. The annoset-list can hold several such
matrices so that a module can provide several annotations at the same time (e.g. the three different
subsets of gene ontology: molecular function, cellular component, and biological process).

5 clusterAlgorithm

The clustering module will partition the dataset and save the result in the clusterset slot of the object.
While clustering approaches like kmeans partition a dataset in non-overlapping groups hierarchical
clustering allows to generate a tree which can be seen as another type of partitioning. But since each
branch of the tree splits a larger group of genes into two smaller ones the partitions are overlapping.
In order to allow for such a partitioning scheme the clusterset slot also holds a list. Each item of that
list can either contain a vector of gene indices specifying the genes in the original dataset or it can be
another list. This type of structure can be used to represent the full hierarchical tree.

6 clusterStatistic

The task of this type of module is the identification of all annotation terms linked to the genes of each
group as they are defined by the clusterset slot in the algorithm part of the goCluster object. A p-value
will be calculated for each of the annotation terms to indicate the probability of this annotation term
being significantly enriched in the considered subgroup as compared to all the genes of the dataset. The
result of the analysis needs to be stored in the statset slot of the object and is also represented by a list
with the same structure as the corresponding clusterset list. But instead of gene indices the terminal
nodes of this list structure carry vectors of p-values named with the corresponding annotation terms.

3

7 clusterSignif

The modules provided in this slot are intended to reduce the full tree of annotation terms to the terms
that can be considered significant on the basis of of multiple correction procedures performed within
this module. This selection of terms will also be represented by a list with the same structure as the
statset but the terminal nodes will only retain the significant annotation terms.

8 clusterVisual

The visualization is the most flexible part of the goCluster framework and has no predefined structure.
The modules are intended to provide convenience functions for a variety of different situations and the
default situation is to use no visualization at all.

A special module derived from the clusterVisual class implements this “no visualization” feature and
is useful to illustrate a minimal implementation of a goCluster module:

setClass("clusterVisual",

representation(

),

contains = "clusterModule"

)

setClass("clusterVisualNone", contains = "clusterVisual")

This shows the definition of the clusterVisual base class as well as the clusterVisualNone class as
defined in the goCluster package.

This is the only module where such a minimal implementation is useful and other modules need at
least an execute function that will fill the required slot of the class (e.g. clusterset, statset, ...).

9 New modules

For demonstration purposes the following code would define a new statistical module that could be used
within the goCluster framework:

setClass("clusterStatisticNew",

representation(

),

prototype(config = list(),

setup = list(),

execute =

function(object, parent)

{

object@statset <- fancyNewStatistic(parent@algo@clusterset,

parent@data@anno@uniqueid,

parent@data@anno@annoset

)

object

}

),

4

contains = "clusterStatistic"

)

Since the new statistic needs no configuration both config and setup contain no functions for setting
parameters. Only the execute function has been defined and is not much more than a wrapper to the
fancyNewStatistic function that will be called with all information necessary for calculating some useful
p-values.

Defining the module this way inside an R session will allow you to immediately select the new module
during the goCluster configuration dialog.

10 Additional functions

In order to give a concise overview on the goCluster object using the standard print method it is
useful to define a short print function for each new module. The following is an example from the
clusterAlgorithmHclust module:

setMethod("print", "clusterAlgorithmHclust", function(x, ...)

{

printData("Algorithm",

"Hclust",

c(paste("Distance measure:", x@distance),

paste("Clustering method:", x@method),

ifelse(length(x@clusterset)!=0,

"The dataset has been clustered.",

"The object holds no result yet.")))

}

)

In addition each visualization module should provide a display function that draws the image or
performs any other function that will produce the visualization as expected from the module. See the
provided modules for examples of such functions.

5

	Introduction
	clusterModule
	clusterData
	clusterAnnotation
	clusterAlgorithm
	clusterStatistic
	clusterSignif
	clusterVisual
	New modules
	Additional functions

