GenomicRanges for Data and Annotation

Martin T. Morgan?

27-28 February 2014

1rntmorgan@fhcrc .org

mtmorgan@fhcrc.org

Introduction

Importance of range concepts: conceptually. ..

>

>

Genomic data and annotation can be represented by ranges

Biological questions reflect range-based queries

Examples

>

>

>

How many reads overlap each gene?
How many reads span splice junctions?
Where do regulatory elements bind in ChlP-seq experiments?

Which regulatory elements are closest to differentially
expressed genes?

What sequences are common under discovered regulatory
marks?

Where do GRanges-like objects come from?

Data
» From BAM files via readGAlignments in GenomicAlignments
» From BED files via import in rtracklayer
Annotation
» rtracklayer import BED, WIG, GTF, .. .files
» TxDb.* model organsism gene models; GenomicFeatures
makeTranscriptDbFromx*

» AnnotationHub — pre-computed instances from large public
resources (later in course)

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html

Key reference

Lawrence et al., 2013, Software for Computing and Annotating
Genomic Ranges. PLoS Comput Biol 9(8): 10031182

> Initial developers: Michael Lawrence, Hervé Pages, Patrick
Aboyoun

*http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371Y%
2Fjournal.pcbi.1003118

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118

Ranges

What is a range?
» ‘start’ and ‘end’ coordinate vectors

v

Closed interval (i.e., include end points)

Zero-width convention

v

Can be ‘named’

v

library (IRanges)
eg <- IRanges(start= c(1, 10, 20),
end = c(4, 10, 19),
names= c("A", "B", "C"))
bigger
start <- floor(runif (10000, 1, 1000))
end <- start + floor(runif (10000, O, 100))
ir <- IRanges(start, end)

‘Accessors’ and simple manipulation
Accessors
> start, end, width, names
‘Vector'-like behavior
> length, [

length(ir)
[1] 10000
ir[1:4]

IRanges of length 4
#Hit start end width
[1] 871 921 51
[2] 932 975 44
[3] 916 937 22
[4] 181 224 44

start(ir[1:4])

Operations
1. Intra-range: operate on each range independently, e.g., shift
2. Inter-range: operate on several ranges of a single instance,
e.g., reduce, coverage
3. Between-range: operate on two instances, e.g., findOverlaps
See table in afternoon lab!

ir <- IRanges(start=c(7, 9, 12, 14, 22:24),
end=c(15, 11, 12, 18, 26, 27, 28))
shift(ir, 1)

IRanges of length 7

start end width
[1] 8 16 9
[2] 10 12 3
[3] 13 13 1
[4] 15 19 5
[5] 23 27 5

5

[6] 24 28

IRangesList

» Often useful to group IRanges into a list, with each element
of the list containing 0 or more /Ranges instances
» Operations usually work on list element

irl <- split(ir, width(ir))
reduce(irl)

IRangesList of length 4

##H $°1°

IRanges of length 1
Hit start end width
[1] 12 12 1
##

$°3°

IRanges of length 1
#Hit start end width
[1] 9 11 3

##

GRanges
Builds on IRanges, IRangesList. ..
> 'seqnames’ (e.g., chromosome) and ‘strand’
» (optional) ‘seqlengths’ for genome information

» (optional) ‘mcols’ for ‘metadata’ data frame on each range

library (GenomicRanges)
genes <- GRanges(seqnames=c("chr3R", "chrX"),
ranges=IRanges(
start=c (19967117, 18962306),
end =c(19973212, 18962925),
names=c ("FBgn0039155", "FBgn0085359")),
strand=c("+", "-"),
seqlengths=c (chr3R=27905053L, chrX=22422827L))
mcols(genes) <-
DataFrame (EntrezId=c("42865", "2768869"),
Symbol=c("kal-1", "CG34330"))

Coordinates and accessors
Genome coordinates
» 1-based

> ‘left-most’ — 'start’ of ranges on the minus strand are the
left-most coordinate, rather than the 5’ coordinate.

Accessors

> seqnames, strand, seqlengths, seqlevels and like /Ranges:
start, end, width, names

» mcols; $ for direct access to metadata

width(genes)
[1] 6096 620
genes$Symbol

[1] "kal-1" "CG34330"

Operations

> Like /Ranges, but generally seqnames- and strand-aware
» E.g., flank identifies upstream (5') region
» E.g., findOverlaps checks seqnames and strand

flank(genes, 1000) ## 5' flanking range

GRanges with 2 ranges and 2 metadata columns:

##
##
##
##
##
##
##
##
#Hit
##
##

segnames ranges strand |

<Rle> <IRanges> <Rle>

FBgn0039155 chr3R [19966117, 19967116] +

FBgn0085359 chrX [18962926, 18963925] -
Symbol
<character>
FBgn0039155 kal-1
FBgn0085359 CG34330

seqlengths:
chr3R chrX

<cl

*[ist classes

» Often useful to have a list, where all elements of the list are
restricted to be of the same type — like /RangesList

» Support for common ‘atomic’ types (LogicallList, IntegerList,
NumericList, CharacterlList, ...) in addition to /RangesList,
GRangesList, . ..

» Operations on list elements usually vectorized across elements

rl <- splitAsList(1:5, c("A", "B", "A", "B", "B"))
elementLengths(rl)

A B
2 3

log(rl)

NumericList of length 2
[["A"]] 0 1.09861228866811
[["B"]] 0.693147180559945 1.38629436111989 1.6094379124:

Three advanced concepts

1. GRanges extends IRanges::Vector, from which it inherits
vector-like operations and metadata.

2. *List data structures are actually vectors + a partitioning, so
operations like unlist, relist and split are fast.

3. Many computationally expensive operations, e.g.,
findOverlaps are implemented in C, and are fast.

	Ranges
	IRanges
	GRanges
	Other Idioms

